Kyrrah Nork 991187528		WEB150
Assignment 3

Q: When is classical inheritance an appropriate choice?
A: This is a trick question. The answer is never. I’ve been issuing this challenge for years, and the only answers I’ve ever heard fall into one of several common misconceptions. More frequently, the challenge is met with silence.
Good to hear:
· Rarely, almost never, or never.
· “Favor object composition over class inheritance.”
Red flags:
· Any other response.
· “React Components” — no, the pitfalls of class inheritance don’t change just because a new framework comes along and embraces the `class` keyword. Contrary to popular awareness, you don’t need to use `class` to use React. This answer reveals a misunderstanding of both `class` and React.
prototypal inheritance instead of classical inheritance. This can be puzzling to programmers trained in conventional object-oriented languages like C++ and Java. JavaScript's prototypal inheritance has more expressive power than classical inheritance, as we will see presently.
	Java
	JavaScript

	Strongly-typed
	Loosely-typed

	Static
	Dynamic

	Classical
	Prototypal

	Classes
	Functions

	Constructors
	Functions

	Methods
	Functions

But first, why do we care about inheritance at all? There are primarily two reasons. The first is type convenience. We want the language system to automatically cast references of similar classes. Little type-safety is obtained from a type system which requires the routine explicit casting of object references. This is of critical importance in strongly-typed languages, but it is irrelevant in loosely-typed languages like JavaScript, where object references never need casting.
[bookmark: _GoBack]The second reason is code reuse. It is very common to have a quantity of objects all implementing exactly the same methods. Classes make it possible to create them all from a single set of definitions. It is also common to have objects that are similar to some other objects, but differing only in the addition or modification of a small number of methods. Classical inheritance is useful for this but prototypal inheritance is even more useful.
